Translational Neuroengineering Group

The Translational Neuroengineering Group is a collective of University of Michigan research labs with interests that span the discipline of neural engineering. Our primary labs are affiliated with the departments of Biomedical Engineering, Electrical Engineering & Computer Science, Neurology, Neurosurgery, and the Neuroscience Graduate Program, and we have members in the departments of Anesthesiology, Kinesiology, Mechanical Engineering, Physical Medicine & Rehabilitation, Plastic Surgery, Psychology, and Surgery. On a weekly basis we meet to discuss a topical journal paper or to have a research presentation, in addition to occasional social events and active collaborations across labs. Below are descriptions of the primary labs (the title for each lab description is a link to that lab’s webpage), and at left are links to a listing of the journal club meetings and recent group news.

Peripheral Neural Engineering & Urodynamics Lab – pNEURO Lab (Bruns)

pNEURO Lab logoThe pNEURO Lab focuses on developing interfaces with the peripheral nervous system to restore function and examine systems-level neurophysiology. Our research lies at the cross-roads of biomedical engineering and neuroscience: neural engineering. We have projects developing closed-loop neuroprostheses, examining and modeling neural structures, studying new applications of functional electrical stimulation, and we have collaborations to develop and evaluate novel electrode interfaces. We are currently focused on pelvic functions and spinal root interfaces. (PI: Tim Bruns – bruns at umich dot edu)


Cortical Neural Prosthetics Lab (Chestek)

LabSlideOur lab focuses on brain machine interface (BMI) systems using 100 channel arrays implanted in motor and premotor cortex. The goal of this research is to eventually develop clinically viable systems to enable paralyzed individuals to control prosthetic limbs, as well as their own limbs using functional electrical stimulation and assistive exoskeletons. We also seek to expand the bandwidth of this neural interface using novel electrodes, circuits, and algorithms. (PI: Cindy Chestek – cchestek at umich dot edu)


 Leventhal Lab

LeventhalThe Leventhal laboratory studies the systems-level physiology of Movement Disorders, focusing primarily on basal ganglia circuits. By advancing our understanding of how these circuits function in health and disease, we aim to develop more rational therapies for disorders like Parkinson’s Disease, dystonia, and tic disorders. Our laboratory uses primarily behavioral and in vivo electrophysiological/optogenetic techniques in rodents. (PI: Dan Leventhal –


Patil Lab

PatilOur research aims to examine the underlying physiological mechanisms of a wide variety of neurological conditions, and to develop an understanding of the factors that determine outcomes in the surgical treatment of these conditions. In the lab we record the electrical activity of the brain during and following brain surgery while human patients perform motor and cognitive tasks. Through quantitative analysis of such recordings, our major research focus is to uncover relationships between cognitive functions and the activity of individual or groups of neurons. We also study the effects of electrical stimulation on the brain. As our understanding increases, we hope to develop novel brain-stimulation therapies to treat such diverse conditions as depression, ataxia, and pain. (PI: Parag Patil – pgpatil at med dot umich dot edu).

Neural Engineering in Epilepsy Lab (Stacey)

Our lab is dedicated to developing better implantable devices to control epilepsy. Dr. Stacey is a clinical epileptologist and spends the majority of his time doing neural engineering research. The lab uses a combination of electrophysiology, machine learning, signal processing, and computational modeling. Data for these projects are acquired from a large database of human patients, an ongoing pilot clinical trial in patients undergoing surgical implantation of electrodes, and from rodent models of epilepsy. The lab is specifically researching the relationship of high frequency oscillations with seizure mechanisms, and developing methods to target and stimulate the brain to stop seizures. (PI: Bill Stacey – wstacey at umich dot edu).

Yoon Lab

YoonMapping the brain and peripheral circuits may be the grandest challenge in all of science today. One of our missions is to help neuroscientists, neurologists, and other clinicians understand these amazingly complex circuits with tools that can monitor neural activity or recreate it in a natural way. Our group also focuses on creating self-contained microsystems that combine and process natural signals as well as electrical signals on a single-chip platform by integrating new MEMS/nano structures with low-power, wireless VLSI circuits and systems. (PI: Euisik Yoon – esyoon at umich dot edu).